云服务器网:购买云服务器和VPS必上的网站!

自然语言处理应用(自然语言处理应用的例子)

本文目录:1、什么是自然语言处理技术,它的应用和挑战是什么?2、一文看懂自然语言处理NLP(4个应用+5个难点+6个实现步骤)3、64自然语言处理底层技术实现及应用–自然语言处理简介什么是自然语言处理技术,它的应用和挑战是什么?自然语言处理(Natural Language Processing,

本文目录:

  • 1、什么是自然语言处理技术,它的应用和挑战是什么?
  • 2、一文看懂自然语言处理NLP(4个应用+5个难点+6个实现步骤)
  • 3、64自然语言处理底层技术实现及应用–自然语言处理简介

什么是自然语言处理技术,它的应用和挑战是什么?

自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,主要研究如何让计算机理解、处理和生成人类自然语言的技术。自然语言处理技术的应用非常广泛,可以用于机器翻译、语音识别、文本分类、情感分析、问答系统、智能客服、智能写作等众多领域。

自然语言处理技术的应用非常广泛,但是也存在一些挑战,包括以下几个方面:

多义性:自然语言在表达意思时往往存在歧义和多义性,使得计算机难以准确地理解和解析语言表达的含义。

语言差异:不同的语言存在巨大的差异,如语法、语义、习惯用法等,使得自然语言处理技术难以适应各种语言。

数据稀缺:自然语言处理技术需要大量的数据进行训练,但是对于某些语言、领域或者任务,缺乏大规模的标注数据,使得技术应用受到限制。

处理效率:处理自然语言需要进行复杂的计算和推理,消耗大量的计算资源,处理效率仍然存在瓶颈。

以上是自然语言处理技术的一些应用和挑战,随着技术的不断进步和应用场景的不断拓展,自然语言处理技术将有望在更广泛的领域发挥作用。

一文看懂自然语言处理NLP(4个应用+5个难点+6个实现步骤)

在人工智能出现之前,机器智能处理结构化的数据(例如 Excel 里的数据)。但是网络中大部分的数据都是非结构化的,例如:文章、图片、音频、视频…

在非结构数据中,文本的数量是最多的,他虽然没有图片和视频占用的空间大,但是他的信息量是最大的。

为了能够分析和利用这些文本信息,我们就需要利用 NLP 技术,让机器理解这些文本信息,并加以利用。

每种动物都有自己的语言,机器也是!

自然语言处理(NLP)就是在机器语言和人类语言之间沟通的桥梁,以实现人机交流的目的。

人类通过语言来交流,狗通过汪汪叫来交流。机器也有自己的交流方式,那就是数字信息。

不同的语言之间是无法沟通的,比如说人类就无法听懂狗叫,甚至不同语言的人类之间都无法直接交流,需要翻译才能交流。

而计算机更是如此,为了让计算机之间互相交流,人们让所有计算机都遵守一些规则,计算机的这些规则就是计算机之间的语言。

既然不同人类语言之间可以有翻译,那么人类和机器之间是否可以通过“翻译”的方式来直接交流呢?

NLP 就是人类和机器之间沟通的桥梁!

为什么是“自然语言”处理?

自然语言就是大家平时在生活中常用的表达方式,大家平时说的「讲人话」就是这个意思。

NLP 有2个核心的任务:

自然语言理解就是希望机器像人一样,具备正常人的语言理解能力,由于自然语言在理解上有很多难点(下面详细说明),所以 NLU 是至今还远不如人类的表现。

自然语言理解的5个难点:

想要深入了解NLU,可以看看这篇文章《一文看懂自然语言理解-NLU(基本概念+实际应用+3种实现方式)》

NLG 是为了跨越人类和机器之间的沟通鸿沟,将非语言格式的数据转换成人类可以理解的语言格式,如文章、报告等。

NLG 的6个步骤:

想要深入了解NLG,可以看看这篇文章《一文看懂自然语言生成 – NLG(6个实现步骤+3个典型应用)》

情感 分析

互联网上有大量的文本信息,这些信息想要表达的内容是五花八门的,但是他们抒发的 情感 是一致的:正面/积极的 – 负面/消极的。

通过 情感 分析,可以快速了解用户的舆情情况。

聊天机器人

过去只有 Siri、小冰这些机器人,大家使用的动力并不强,只是当做一个 娱乐 的方式。但是最近几年智能音箱的快速发展让大家感受到了聊天机器人的价值。

而且未来随着智能家居,智能 汽车 的发展,聊天机器人会有更大的使用价值。

语音识别

语音识别已经成为了全民级的引用,微信里可以语音转文字, 汽车 中使用导航可以直接说目的地,老年人使用输入法也可以直接语音而不用学习拼音…

机器翻译

目前的机器翻译准确率已经很高了,大家使用 Google 翻译完全可以看懂文章的大意。传统的人肉翻译未来很可能会失业。

NLP 可以使用传统的机器学习方法来处理,也可以使用深度学习的方法来处理。2 种不同的途径也对应着不同的处理步骤。详情如下:

方式 1:传统机器学习的 NLP 流程

方式 2:深度学习的 NLP 流程

英文 NLP 语料预处理的 6 个步骤

中文 NLP 语料预处理的 4 个步骤

自然语言处理(NLP)就是在机器语言和人类语言之间沟通的桥梁,以实现人机交流的目的。

NLP的2个核心任务:

NLP 的5个难点:

NLP 的4个典型应用:

NLP 的6个实现步骤:

百度百科版本

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。

自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域。

维基百科版本

自然语言处理(NLP)是计算机科学,信息工程和人工智能的子领域,涉及计算机与人类(自然)语言之间的交互,特别是如何对计算机进行编程以处理和分析大量自然语言数据。自然语言处理中的挑战通常涉及语音识别,自然语言理解和自然语言生成。

64自然语言处理底层技术实现及应用–自然语言处理简介

语言是人类区别于其他动物的本质特征。因此,语言也可以看做是智能的一种体现。在历史上,人类为了信息交流的方便以及流传,发明了各式各样的文字用于记录。而且这些文字在不断的改进中传承至今。

但是,随着计算机技术的发展,使得计算机在某些任务的有着超常的表现。这使得科学家们开始思考,能不能让机器也能像人类一样理解自然语言,并使用计算机帮助人类完成相关的任务?也正是这样的疑问推动了自然语言处理技术的诞生。

如果你之前有学过机器学习或深度学习相关的课程,那么相信你对自然语言处理应该不会很陌生。下图显示了当前人工智能三个比较重要的研究方向。从下图也可以看出自然语言处理是人工智能的一个重要分支。

在自然语言处理的发展过程中,主要存在两种观点,如下:

理性主义方法: 该方法从自然语言的语法角度出发,是通过制定各种语法规则来解决自然语言处理问题。

经验主义方法: 该方法从统计的角度出发,用数学公式来解决自然语言处理问题。

这两种方法都在自然语言处理中扮演着不可或缺的角色。在自然语言处理的发展历史上,也因为这两种方法将许多研究者划分成为了两种不同的阵营。自然语言的发展历程可以归纳如下几个时期:

上图显示了自然语言处理的大致发展历程。你可能会觉得有点懵,因为上图拥有太多的专业术语。不过这也没有关系,在后续的课程中这些术语会陆续的讲到。这里也只需了解个大概,想了解更多,也可以去阅读宗成庆老师编写的《统计自然语言处理》。接下来,介绍自然语言处理常用的底层处理技术。

通常情况下,自然语言处理的整体技术框架可表示为如下图所示。由图可知,自然语言处理可以大致分为底层技术和应用技术。底层技术主要是为了后续各种各样的任务做预处理。而应用技术主要解决的是某个具体的任务需求。

前面主要讲解了自然语言处理的底层技术。它们虽然不是自然语言处理的最终目标。但却是整个自然语言处理过程中不可或缺的一部分。接下来,我们来讲解目前自然语言处理的一些应用应用场景或任务。

文本分类

文本分类是自然语言处理最常见也是最简单的应用场景。文本分类就是将多个文档按某种属性来进行划分。例如,图书馆会把人文社科这一类的书籍放到一个区域,把科学技术类的书籍放到另一个区域,这样既方便馆内工作人员整理,也方便读者查阅。再比如说下图所示的邮箱常用的垃圾邮件分类功能,也是一个常用的文本分类应用场景。

文本自动摘要主要有三种方法,如下:

抽取式摘要:直接从原文中抽取已有的句子组成摘要。

压缩式摘要:抽取并简化原文中的重要句子构成文摘。

理解式摘要:改写或重新组织原文内容形成最终文摘。

文本自动摘要有非常多的应用场景,如下:

自动报告生成

新闻标题生成

搜索结果预览

为下游任务提供支持

情感分析

情感分析也叫观点提取,主题分析,情感挖掘等,其分析的目的是提取人们对一些事物或某个人的看法和态度,来发现存在潜在的问题,以便用于改进或预测。例如,可以通过对外卖评价情感分析来改进外卖服务。

目前情感分析主要有两种方法,如下:

基于情感词典的传统方法:该方法先定义一个情感词典。例如,「很好」、「不错」标记为积极的态度。而将「差」、「垃圾」等词标记为消极的态度。然后统计一个句子中正面和负面情感词的词数,通过比较情感词的数量来判断句子的整体感情色彩。

基于深度学习的方法:该方法主要使用循环神经网络来对句子进行信息提取,然后通过分类的方式来判断情感色彩。

情感分析的应用场景也非常广泛,如下:

个性化推荐系统

智能搜索

产品反馈

业务安全

机器翻译

机器翻译也称为自动翻译,指的是让机器能够将一直自然语言转换成为另一种自然语言的过程。机器翻译是最早的自然语言处理任务之一。在计算机诞生之时,就有科学家提出使用计算机来代替人工进行翻译。而这个问题也一直延续到今天,仍然是自然语言里面一个困难重重的任务。

自动问答

自动问答系统有时候也称为聊天机器人,是自然语言处理中一个比较热门的方向。具体来说,指的是用户以自然语言的形式向机器提出问题,机器系统依据对问题的分析,从各种数据资源中自动找出准确的答案来回答用户。

目前,自动问答主要应用于智能客服,例如淘宝的客户服务。而且,自动问答的技术也日趋成熟,也有许多公司开发出自己的聊天机器人。例如,微软的 小冰机器人 ,百度公司的小度机器人等。

本文来源:https://www.yuntue.com/post/167288.html | 云服务器网,转载请注明出处!

关于作者: yuntue

云服务器(www.yuntue.com)是一家专门做阿里云服务器代金券、腾讯云服务器优惠券的网站,这里你可以找到阿里云服务器腾讯云服务器等国内主流云服务器优惠价格,以及海外云服务器、vps主机等优惠信息,我们会为你提供性价比最高的云服务器和域名、数据库、CDN、免费邮箱等企业常用互联网资源。

为您推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注