云服务器网:购买云服务器和VPS必上的网站!

spark云服务器(cloudera spark)

本文目录:1、hadoop和spark的区别2、有maxcomputer 为什么阿里要建emr3、大数据Spark技术真的能够替代Hadoop吗?hadoop和spark的区别spark和hadoop的区别:诞生的先后顺序、计算不同、平台不同。诞生的先后顺序,hadoop属于第一代开源大数据处理平台

本文目录:

  • 1、hadoop和spark的区别
  • 2、有maxcomputer 为什么阿里要建emr
  • 3、大数据Spark技术真的能够替代Hadoop吗?

hadoop和spark的区别

spark和hadoop的区别:诞生的先后顺序、计算不同、平台不同。

诞生的先后顺序,hadoop属于第一代开源大数据处理平台,而spark属于第二代。属于下一代的spark肯定在综合评价上要优于第一代的hadoop。

计算不同spark和hadoop在分布式计算的底层思路上,其实是极为相似的,即mapreduce分布式运算模型:将运算分成两个阶段,阶段1-map,负责从上游拉取数据后各自运算,然后将运算结果shuffle给下游的reduce,reduce再各自对通过shuffle读取来的数据进行聚合运算spark和hadoop在分布式计算的具体实现上,又有区别;hadoop中的mapreduce运算框架,一个运算job,进行一次map-reduce的过程;而spark的一个job中,可以将多个map-reduce过程级联进行。

平台不同spark和hadoop区别是,spark是一个运算平台,而hadoop是一个复合平台(包含运算引擎,还包含分布式文件存储系统,还包含分布式运算的资源调度系统),所以,spark跟hadoop来比较的话,主要是比运算这一块大数据技术发展到目前这个阶段,hadoop主要是它的运算部分日渐式微,而spark目前如日中天,相关技术需求量大,offer好拿。

有maxcomputer 为什么阿里要建emr

有maxcomputer阿里要建emr的原因是emr提供了灵活的搭配组合方式

开源大数据开发平台EMR构建于云服务器ECS上,基于开源的ApacheHadoop和ApacheSpark,让您可以方便地使用Hadoop和Spark生态系统中的其他周边系统分析和处理数据。EMR还可以与阿里云其他的云数据存储系统和数据库系统(例如,阿里云OSS和RDS等)进行数据传输。

大数据Spark技术真的能够替代Hadoop吗?

     但在过去的几年中,Hadoop似乎并没有出现过任何衰退的迹象。在2015年Atscale的调查报告中显示:“在未来3个月内,已经有超过 76%的人使用Hadoop来做更多的工作。”这些受访者中大约有一半声称他们利用Hadoop工作中获得了一定的价值。Hadoop作为一个十多年的老品牌,在产品的采用方面并没有减缓下降的趋势,Spark也并没有做到真正取代Hadoop。空口无凭,下面我们从以下几个方面来分析一下Spark在未来的几年之内到底能不能真正的取代Hadoop。

    由雅虎为工程师和数据科学家打造的Apache Hadoop曾因巨大的潜力而备受称赞,但如今它却受到了更快的产品的影响,而这些产品往往来自于它本身的生态系统——Spark就是其中之一。今年早些,H20.ai的创始人Sri Ambati对Datanami 曾说:“Spark将会使Hadoop处于绝地”。

     毫无疑问,为专家设计的产品一般都会停留在原来的轨道上,在其他方面不会有所涉及。但Spark在各个行业都存在一些有意义的分布,这可能要归功于各种市场上的大数据的泛滥。所以,虽然Spark可能有更广泛的应用,但Hadoop仍然支配着原本预期的用户群。在全球范围内,我们可以看到Informatica处于中心位置——在欧洲和美洲整体市场份额占比达32%。

    在两年半的时间里,我们跟踪了Informatica在云市场和工业领域的增长,结果显示达到了50%的增长,而且在高等教育领域也处于领先地位。上周, Informatica被Gartner评为主数据管理解决方案2017年魔力象限的领导者。而Hadoop仍然停留于过去成功的地理市场中。在企业客户中Spark也没有大范围的涉及。我们注意到世界上大多数公司规模较小,一般都为1-50名员工,所以Spark似乎并不是任何规模公司的唯一选择。

    对于那些已经使用Hadoop的人来说,这个产品也对企业和公司起到了一定的作用,而且 Hadoop并不仅限于一种用户。而Hadoop无论在何种规模的公司中,使用率相对于Spark还是非常高的。此外,在调查的过程中,传统的科技公司像eBay、Verizon、惠普和亚马逊等主流厂商已经开始使用Spark,但是Hadoop还没有被大规模的抛弃。相反,用户使用Spark作为系统的介绍,利用这个程序来突破Hadoop的障碍,两者的结合,使得工作更高效地完成。

    Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着你不需要购买和维护昂贵的服务器硬件。同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一个专门用来对那些分布式存储的大数据进行处理的工具,它并不会进行分布式数据的存储。

  其次,还有一点也值得注意——这两者的灾难恢复方式迥异。因为Hadoop将每次处理后的数据都写入到磁盘上,所以其天生就能很有弹性的对系统错误进行处理。Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着你不需要购买和维护昂贵的服务器硬件。同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。

本文来源:https://www.yuntue.com/post/170925.html | 云服务器网,转载请注明出处!

关于作者: yuntue

云服务器(www.yuntue.com)是一家专门做阿里云服务器代金券、腾讯云服务器优惠券的网站,这里你可以找到阿里云服务器腾讯云服务器等国内主流云服务器优惠价格,以及海外云服务器、vps主机等优惠信息,我们会为你提供性价比最高的云服务器和域名、数据库、CDN、免费邮箱等企业常用互联网资源。

为您推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注